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Abstract

Utilization of variational techniques has facilitated the solution of scattering
problems. A variational principle which gives a bound on the scattering elements in
waveguide problems is presented. The formalism is applicable to scalar and tensor type
problems for single and multimode scattering. A variation-iteration method can be used
to avoid the need for explicitly evaluating a Green’s function that appears in the
formalism. Also, an alternative variational bound principle is outlined.

Introduction

The solution to scattering problems
involving dielectric obstacles in waveguides
has been facilitated by the use of varia-
tional techniques fir t developed by
Schwinger and others. 7 For certain wave-
guide problems the variational expressions
of Schwinger and others yield upper or lower
bounds on the network parameters. However,
the bound is not realized for truly three-
dimensional problems, that is, where the
fields cannot be derived from a single sca-
lar potential, An example is a three-dimen-
sional obstacle which touches only one wave-
guide surface. A method originally developed
by Kato 2 for quantum mechanical potential
scattering, and subsequently extended and
applied to the scattering of electromagnetic
waves by isotropic obstacles in a waveguide, 3

does give variational bounds on the scatt-
ering parameters. However, the method is
limited to relatively simple problems because
it requires that there be some solvable pro-
blems related in a rather restricted fashion
to the original problem. The advantage of
the Kato formalism is that, where appli-
cable, it can provide both bounds on the
scattering parameters under consideration.
On the other hand, the variational bound
(VB) principle 4 described here gives bounds
on the quantities of interest in more general
cases. The VB was applied to single-mode
scattering caused by obstacles symmetric
with respect to a plane perpendicular to
the axis of the waveguide.s The technique
was readily extended to the case of non-sym-
metric obstacles in single-mode waveguides 6

and then generalized to multimode waveguide
problems.z One should note the distinction
between bounds and variational bounds. Var-
iational bounds contain variational para-
meters while bounds do not. The presence of
variational parameters enables one to appro-
ach monotonically the correct results.

A basic difficulty in using the VB
method is the presence of a Green’s function
in the formalism. However, a variation-
iteration technique of quantum mechanics 8
is extended by us to waveguide problems.
This method avoids the need of evaluating
explicitly any Green’s function and therefore
facilitates the solving of more involved
waveguide problems. In addition, some ideas
about an alternative variational technique

are discussed.

Variational Bound Principle

In this section we outline the salient
points in the derivation of the VB principle
for the scattering of an electromagnetic
wave by an obstacle in a waveguide. On
assuming a time dependents exp (-iwt), the
electric-field intensity E satisfies the
equations

-7X(7X7) + (emZ/cZ): = o (la)

7.EE = o (lb)

where c is the velocity of light, c is the
relative permittivity, u is the angular
freuqency, and p of the obstacle is 1,
Equation (la) can be rewritten as

(w - H)?= (W- T-V);=O (2a)

where
v-~~;. + (1 -E)w2/c2

w 3J/c2, T ~ .v2 (2b)

With H, W, T, and V symbolically identified
with the Hamiltonian and with the total, the
kinetic, and the potential energy, respect-
ively, we have a connection with the
Schroedinger equation, This purely formal
connection simplifies the adaptation of the
VB formalism, developed for quantum mech-
anical problems, to the waveguide case,

Letting the z coordinate be parallel to
the axis of the waveguide,

!
he even and odd

standing wave solutions of have the
asymptotic forms 3 for z + CO:

;e=?(x,y) [-sin(kz+e)+cot(~ -f3)cos(kz+e)](3a)

?o=~(x,y) [cos(kz+9) +cot(~- f3)sin(kz+e)],(3b)

where neand noare the even and odd phase
shifts, respectively, and ~(x,y) is the
form function for the propagating mode. With
the help of (1) and (3) one arrives at the
following identity:3

2 [k cot(n -e) - k cot (qt -e )1 =
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~?#H -W)~td~ -~~~(H -W)fidT (4)

where ?t is a trial electric field with the
boundary conditions given by (3) but with
rI replaced by nt,

;E?t-~,

and the range of integration d? is over the
interior of the waveguide, On dropping the
unknown second order term

J;*(H - W) ?d~ (5)

one has a variational principle. To derive
a VB principle, an explicit bound on (5)
must be obtained.

The spectrum of H - W for the corres-
ponding class of functions contains a posit-
ive continous spectrum as well as a contin-
uum of negative eigenvalues ranging from
-(W-m2/a2) to O. It is possible to eliminate
the positive continuum and a finite number
of negative eigenvalues, But one does not
know how to eliminate a continuum of negat-
ive eigenvalues, and therefore a bound on
the second order term is not readily obtained,
However, the replacement of the identity (4)
by another identity, obtained with the use
of projection operators, enables us to
formulate a practical variational bound,

We define two dyadic projection
operators P and Q, such that for any vector
function ~x,y,z)

pF(x,y,Z) = &(X,y)~?(X ’,y’)”~(X’,y’,Z) dx’dy’

+~~(X,Y)” ~(X,Y) dxdy (6a)

and

Q= l-P; (6b)

that is, P projects onto the propagating
mode and Q projects onto the higher modes.
The presence of Q eliminates the negative
continuum contribution to the eigenvalue
spectrum and therefore the resulting
modified second order term can be bounded.4
The VB principle takes the form 5

2k[cot(~ -e) - cot(np-e)]< 2~P~p”HQ;td~

+ ~Q~to[H + HPGPPH -W] Q;td~, (7)

where PEP is the regular solution of the
(so-called) static one-dimensional equation
in z.

P(H - W)plp = (), (8)

and the dyadic Green’s function Gp is
defined by

P(H - W)pGp = -p, (9)

An expression for multimode scattering
equivalent to (7) has been derived.6

Variation - Iteration Method

The construction of the Green’s
functions are the most serious complications
of the VB method. This can be avoided by
using an iteration procedure.g In the
derivation of the VB principle (7) (with
the aid of the projection operators), (la)
was transformed into a pair of coupled
equations

P(H - W)P~ = - PHQ~ (lo)

Q(H - W)Qf = - QHP~. (11)

The Green’s function Gp arises in the formal
solution of (10) as

P~ = Ptp + PGPPHQ;. (12)

The variation iteration method avoids the
explicit evaluation of Gp. The procedure
m y be illustrated as+follows. Choose
Q~ t = O and obtain PEot by solving (10).
Substitute P?ot in the right hand side
of (11) and ~solve for Q~lt variationally.
Ngxt put this QElt back into (10) and obtain
PE1t exactly.It can be shown from the V8
principle (7) that this procedure provides a
bound at every stage of the iteration, The
first iteration gives

2k[cot(~ -e) - cot(qp-e)] <

$&”Hfi, td~. (13)

After the nth iteration we have,

2k[cot(n-e) - cot(np -e)] s

{
P&’. PHQ~nt dT

J+ Q?nt “ QHP [P~nt - P~n-l,t] dT. (14)

(Note that when n=l, Ptn-,,t = P;P.)

This method is useful if the integration
converges rapidly.

Variational Bound Without Projection Operator

It is possible to obtain a VB principle
without the use of projection operators. The
starting point is again the identity (4).
It is shown that 9

\??o(H-W)~ dT =

J/ (H-W)?to G(X,Y,Z;X’ ,y’,z ’)”(H-h@tdTdd

(15)
where G satisfies

(ti-w)G = -la(x-x ’)d(y-Y’)6(z-z’) (16)

and where ~ is the idemfactor. G can be
written as

G=GO+COVGO+GOVGOVGO+.. . = GO+GOVG, (17)

where Go is the free (absence of obstacle),
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Green’s function, From (17) 2. T. Kate, “Upper and lower bounds of

Go = (l- GOV)G.
scattering phases,” Progr. Theor. Phys.,
Vol . 6, pp. 394-407, May 1951.

3. L. Spruch and R. Bartram, “Bounds on the
If GOVS a< 1 then, elements of the equivalent network for

[Gl <G. ~
scattering in waveguides,” J, Appl.

M(x,Y,z; X’,Y’,Z’), Phys., vol. 31, pp. 405-413, May 1960.

=a 4. Y. Hahn, T.F. O’Malley and L.Spruch,

Therefore,
“Improved minimum principle for single-
channel scattering,” Phys. Rev. , vol. 139
Apr. 1963, pp. 381-394; Y. Hahn,

~~.(H-W)~dT s j~(H~d):tlM l(H-w)?tld=d~i . (18) T.F. O’Malley and L. Spruch, “Improved

If M = N(x,y,z) N(n’,y’,z’
/

minimum principle for multichannel
the right hand scattering,” Phys. Rev. vol. 134,

side of (18) becomes ~lN /(H-W)~tldT]2. May 1964, pp. B911-B919,
With the aid of (18), (4) yields 5. I. Aronson, K. Kalikstein, C.J. Kleinman,
bounds on the scattering parameters, and L. Spruch, “Variational bound

Conclusion
principle for scattering of electro-
magnetic waves by obstacles in a wave-
guide,” IEEE Trans. Microwave Theory

The VB principle has been presented Tech., vol. MTT-18, Oct. 1970, pp. 725-
for the determination of variational bounds 731.
on the elements that characterize the 6. K. Kalikstein and C.J. Kleinman,
scattering of electromagnetic waves by “Minimum principle determination of
dielectric obstacles in single and multimode
waveguides.

equivalent parameters of microwave
A modified form of the VB structures,” IEEE Trans. Microwave

method (based onan iteration procedure) Theor~9~;ch~p(C~[~;~p.), vol. MTT-18,
which avoids the need of explicitly finding Jan.
the Green’s function has been described,

.
7. K. Kaliks~ein and C.J. Kleinman,

Finally a different approach for obtaining “Variational Bound Principle For Multi-
a VB principle, which has not been fully mode Waveguide Scattering,” IEEE Trans.
investigated, is mentioned. Microwave Theory Tech., vol. MTT-19,

August 1971, pp. 673-677.
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